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Abstract. The propagation of the first displacement maximum of a semi-infinite wavetrain
in a two-dimensional random-fibre network is analysed. Model calculations and numerical
simulations are used for demonstrating that two qualitatively different wavefront velocities
appear in the network. A transient wave, which travels fast and whose amplitude decreases
exponentially, dominates the short-time behaviour when the bending stiffness of the fibres is
small and the driving frequency is high. This mode can be described by a one-dimensional
model. The transient-wave mode propagates even if the bending stiffness of the fibres vanishes,
in which case the normal sound velocity is zero. The usual, and slower, effective medium mode
always dominates at late times. It also dominates at short times if the driving frequency is low
and/or the bending stiffness of the fibres is relatively high.

1. Introduction

A model material built of randomly deposited fibres which are connected at intersections,
is an interesting object for research. The technological applications of such a model are
numerous. For example, it can contribute to the understanding of common materials such
as glass fibres, polymers and ordinary paper. Random fibre networks are also interesting
from an academic point of view, as, in contrast with the extensively used randomized
lattice models [1], they contain disorder in a natural way. It is therefore easier to compare
numerical and theoretical results with experiment.

Earlier investigations of random-fibre networks have mainly focused on the network
stiffness and quasistatic fracture [2–7]. These investigations have all been based on the
effective medium model introduced by Cox [2]. The Cox model predicts correctly the
average stress distribution along the fibres, and the average stress in a fibre, as a function
of orientation and with respect to the direction of the external stress [6]. The Cox model
can also be extended to model fracture, and it gives valuable qualitative insight into the
fracture of random-fibre networks [5, 6, 8]. The Cox model is not, however, capable of
giving quantitatively correct results for the mechanical properties of fibre networks [7] (like
Young’s modulus or strength). The Cox model fails in particular close to the percolation
critical density, and if, for example, the bending stiffness of the fibres become so small that
stress can only be transferred as elongation of the fibres [5, 7, 9].

In this paper we investigate the propagation of the leading elastic wavefront through
a random-fibre network. By the leading wavefront we mean here the first displacement
maximum through the fibre crossing points of the network. We apply the Cox model
formula of the network stiffness to calculate the sound velocity. The result is consistent
with numerical simulations in the case of low frequencies and a high bending stiffness
of the fibres. For a low bending stiffness and/or high frequency, the Cox model result
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fails, however. In this case the propagation of the first displacement maximum is correctly
described by a one-dimensional model. A cross over between the two model solutions is
observed when the frequency and/or the bending stiffness of the fibres are changed. A
similar cross over is also seen in the amplitude decay. Simulations reveal a power-law
decay in the Cox model limit and an exponential decay in the one-dimensional model limit.

To illustrate random-fibre networks and the two model solutions, we show in figure 1
two networks for which the effective medium model and the one-dimensional model,
respectively, are valid. In figure 1(a) a snapshot is taken of a network after the first quarter
of a transverse wave has entered the network. The wavelength is long, and the network
obviously deforms very much like a continous and homogeneous medium. The square in
this figure denotes the original boundaries of the network. In figure 1(b) no deformations are
shown as the amplitude decays very rapidly in this case when the one-dimensional model is
valid. Instead a circle is drawn around those fibre–fibre crossings which have been reached
by the highest average velocities of a longitudinal wave (i.e. a threshold value is chosen
for the distance of each crossing from the left edge of the network divided by the time of
arrival of the first displacement maximum). These points form more or less one-dimensional
paths. To further demonstrate the difference between these two networks, the amplitude(A)

of the first displacement maximum at each crossing is plotted in figure 2 as a function of
the distance (x) from the left edge of the network. The driving amplitude is in both cases
0.01. The amplitude remains more or less constant in the network of figure 1(a), while it
decreases more or less exponentially in the network of figure 1(b) (these two behaviours
appear as two distinct branches in figure 2).

2. The numerical model

A great deal of the results reported in this paper are based on the numerical model used
to produce figure 1. It is a model of an elastic random-fibre network obeying Newton’s
equations of motion. Geometrically a network is constructed by randomly placing equally
long line segments (fibres of lengthL) on a square of sizeLx × Ly . At every point where
two fibres cross they are assumed to be rigidly bonded to each other. The midpoints and the
orientations of the fibres are chosen from uniform uncorrelated distributions. The orientation
angles are chosen from the interval−π/2 to π/2. The midpoints are uniformly scattered
over a square of width (Lx + L) and height (Ly + L). The midpoints of the fibres are
thus allowed to fall outside the square used in the simulations to avoid the density of the
fibres to be lower at the boundaries. In order to apply Newton’s mechanics to the network,
distribution of the mass must be defined. For numerical efficiency we have lumped all the
mass of the network on the interfibre crossings. For simplicity we further assume that there
is a mass point of equal size(m) at each crossing point. This model corresponds to the case
when the ‘glue’ which connects the fibres is heavy compared to the fibre-mass density. The
boundary conditions are chosen such that the fibre ends at the boundaries are free to move
without constraints (i.e. ‘free’ boundary conditions), except at the left boundary (x = 0)
where the fibre ends are forced to move in either thex or the y direction, giving rise to
predominantly longitudinal or transverse waves, respectively. The forced motion of these
fibre ends is described by a semi-infinite sine wave sin(ωt) for t > 0, which means that the
first displacement maximum leaves the left boundary att = π/2ω.

The network is set to be at rest at the timet = 0, and the displacements and the
accelerations of all the mass points in the network are calculated iteratively at discrete time
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Figure 1. (a) The displacements att = π/2ω in a network withq/qc = 6, m = 0.01,
w = 0.15; transverse wave with a frequency of 0.0125. (b) A network with q/qc = 6,
m = 0.12,w = 0.2. Circles mark the interfibre crossings which have been reached by the first
displacement maximum. The more or less one-dimensional paths formed by the circles are the
fastest paths of propagation in the network. The frequency is 0.125.

steps using a discretized form of Newton’s equations of motion, i.e.

M

1t2
U(t +1t) =

[
2M

1t2
−K

]
U(t)− M

1t2
U(t −1t) (1)

whereM is a diagonal matrix containing the masses,K is the global stiffness matrix of the
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Figure 2. The amplitudes (A) of the first displacement maxima in two different networks which
have the same parameters as those in figure 1.A is plotted as a function of distancex from the
driving source. The data corresponding to figure 1(a) give an almost constant amplitude, while
those corresponding to figure 1(b) describe a more or less exponentially decaying amplitude.

network,U(t) is a time-dependent vector containing the displacements of the mass points,
and1t is the length of the time step. For each single-fibre segment (between two adjacent
fibre crossings) we use the stiffness matrix of a slender linear elastic beam,

k =
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 (2)

whereA = w2 is the cross-section area of the fibres,l the length of the segment,E
Young’s modulus andI = w4/12 the moment of inertia;k is given here in the local
coordinate system of a fibre (i.e. thex axis along the fibre axis). The six diagonal elements
of k correspond to thex andy displacements and rotation of the left and the right end of
the fibre segment, respectively.K is constructed by transforming thek of all segments into
the global coordinate system and then summing them together (a lot of rows and columns
containing only zeros must of course be added to equation (2) before the summation is made).
Note thatK is not updated as the network is being deformed. That is, in a strict sense
our model is only correct for infinitesimal deformations. In particular, collisions between
adjacent fibres due to deformation are completely neglected. We follow the propagation
of the first displacement maximum by recording it at each mass point. To filter numerical
noise we use a lower cut-off on the displacement amplitude such that amplitudes lower than
this limit are not accepted as first-displacement maxima.

3. The one-dimensional model

The one-dimensional model describes the wave propagation velocity and the amplitude
decay in a case when either the bending or the axial stiffness of the fibres is small in
comparison with the other. In these limits we model the network as an ensemble of random,
one-dimensional chains of fibre segments (segments of fibres between two crossing points).
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This ensemble of segment chains consists of all possible paths along the fibres which lead
across the network in thex direction (i.e. the wave-propagation direction). Every segment
belongs, of course, to many possible paths, but since the first displacement maxima of
the induced elastic waves (which we consider here) are dominated by signals travelling
along the shortest routes, we can neglect all long paths. When the density is relatively
high (i.e. not close to the critical density of percolation), the shorter paths are relatively
straight, and they do not cross each other very often. This means that, if the average
bending stiffness of the fibre segments is much smaller than their average axial stiffness,
we can, in the first approximation, neglect interactions between these paths. The case of
induced transverse waves can be described by a similar model in the limit of large bending
stiffness. In both these limits there will be no time for stress relaxation in they direction.
For short wavelengths the first displacement maximum can then be considered as travelling
along an ensemble of randomnon-interactingchains of fibre segments. The equations of
motion for such a chain are just discrete one-dimensional classical wave equations with a
varying stiffness constant [10, 11]. The variation in the stiffness constant comes from the
random variations in the length of the segments. The equations of motions are simply given
by

müi − ki(ui+1− ui)+ ki−1(ui − ui−1) = 0 (3)

where ui+1 − ui is the strain of the fibre segment separating the pointsi + 1 and i in
the chain. When a longitudinal wave propagates along a chain, fibre segments will be
deformed through elongation and compression. We can then use the axial modulus or the
element(1, 1) in the stiffness matrix (equation (2)) forki , i.e. ki = Ew2/li , where li
is the length of segmenti. If, on the other hand, a transverse wave propagates along
the chain, fibre segments will deform through shear and bending. If the moment of
inertia of the crossings is relatively high, we can simply use the matrix element(2, 2)
in equation (2) forki , i.e. ki = (w/li)2Ew2/li for the transverse waves. Notice, however,
that there are no perfectly straight chains in a random-fibre network (cf figure 1), which
means that fibre segments belonging to a chain will be deformed in all possible ways.
The first displacement maximum will, however, always be dominated by the fastest of the
modes. Ifu(x) varies slowly in comparison with all segment lengths, then equation (3)
can be replaced by an effective differential equation. If there would be no variations in
the segment lengths, the continuum limit of equation (3) would simply be a classical wave
equation

m
d2u

dt2
− kl2 d2u

dx2
= 0. (4)

In the case of longitudinal waves (i.e. whenki = Ew2/li), it is easy to show that
the continuum limit of equation (3) is similar to equation (4). We only have to
replace l with l(x) = (li + li−1)/2, and k with k(x) = Ew2/l(x). The local
velocity given by equation (4) isv(x) = l(x)

√
k(x)/m. By integrating over the

distribution of the segment lengthsl(x) we get the average velocity of longitudinal
waves.

The segment-length distribution in a network with a high fibre density is similar to the
cluster-size distribution of one-dimensional percolation. This distribution is easily shown
to be a simple exponential distribution

P(l) = (2q/πL) exp(−2ql/πL) (5)

whereq is the fibre density defined as the average number of fibres in an area of sizeL2

[12].



6606 J Åström et al

For transverse waves the situation is more complicated. If we writeli as l̂i−δl, andli−1

as l̂i + δl, it is, however, straightforward to show that the continuum limit of equation (3)
can be written in the form

m
d2u

dt2
− k(x)l2(x)(1+ η1)

d2u

dx2
− k(x)l2(x)η2

du

dx
= 0 (6)

where η1 = (δl/ l(x))2[3 − (δl/ l(x))2]/[1 − (δl/ l(x))2]2, and η2 = (4δl/ l(x))/[1 −
(δl/ l(x))2]2. For high frequencies, or whenη2 is small, it can be shown using the Fourier
transform [13] thatη2 only causes random fluctuations in the amplitude but does not affect
the velocity. For low frequencies we expect thatη2, which describes small-scale random
fluctuations around zero, will only cause temporal perturbations in the profile of the wave.
That is, we expect that the effect ofη2 on the velocity can be neglected. This means that
equation (6) is simply a wave equation of the same form as equation (4). The velocity of
transverse waves can thus be obtained by integrating over the distributions ofl(x) andδl.
Carrying out the integrations overl(x) for the longitudinal waves, and overl(x) andδl for
the transverse waves, we find that in both cases the velocity is of the form

v ∝ 〈l〉
√
〈k〉/m (7)

where 〈l〉 is the average ofl(x), 〈k〉 = Ew2/〈l〉 for the longitudinal waves, and〈k〉 =
Ew4/〈l〉3 for the transverse waves. The prefactors not included in equation (7) are of the
order unity in both cases. There are also other factors of order unity that will affect the
true velocity. These factors arise from the fact that no fibre segment chain in a random-
fibre network will be perfectly straight, and they will therefore be slightly longer than the
travelled distancex. It is, however, very difficult to exactly evaluate the effective length of
the chains followed by the first displacement maxima. In order to get an expression for the
wave propagation velocity as a function of the density of fibres (q) we have to calculate
〈l〉 as a function ofq. 〈l(q)〉 is easily obtained from the distributionP(l), and the result is
〈l〉 = πL/2q in the limit of highq. By inserting this in〈k〉 = Ew2/〈l〉 for the longitudinal
waves, and〈k〉 = Ew4/〈l〉3 for the transverse waves, and using equation (7), we finally
arrive at the wave-propagation velocity

v = κ
√
πEw2L

2qm
(8)

whereκ = fgl for the longitudinal waves, andκ = fgt2qw/πL for the transverse waves.
fgl andfgt are the proportionality factors of order unity for the longitudinal and transverse
waves, respectively.

The amplitude decay in a one-dimensional chain will mainly take place at the interfibre
crossings, where the segment chain changes direction. The change in the direction is more
or less an uncorrelated non-uniform random variable, which means that we can use an
effective angle of direction change to describe the ensemble [9]. Since our model is linear,
we expect that the amplitude will be decreased by a constant fraction (γ ) at each crossing.
In other words, the amplitude (A(x)) decay in the segment-chain model will be governed
by

dA(x)

dx
= −γA (9)

which has a simple exponential solution,A(x) = A0 exp(−γ x). This exponential decay has
been verified and analysed in more detail for the random spring network [9].
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Figure 3. A schematic description of the Cox model. The segment lengthl and the displacement
differenceus − uf are indicated in the figure.

4. The effective medium model

In the above model we considered networks for which either the bending or the axial
modulus was much smaller than the other. The wavelength was also relatively short. In
the opposite limit, i.e. when the bending and axial moduli are about the same, and the
wavelength is long, we expect that the fibre network will act as an effectively continuous
and homogeneous medium (cf figure 1). In such a case the velocity of elastic waves
depends on the effective Young’s modulus(En), the Poisson ratio(σ ), and the effective
mass density(ρ) of the network. The effective mass density of our network isρ = m/〈l〉2.
The coefficient of unilateral compression is defined asC = En/(1− σ 2), and the shear
modulus asG = En/2(1+σ). These two factors (C,G) can be calculated for fibre networks
within the effective medium approximation introduced by Cox [2]. The Cox model for the
stress distribution in the fibres of a network is based on force balance in the fibre–fibre
crossings. Force balance means that a change in the stress along a fibre across a crossing
is equal to the stress applied to the crossing by the intersecting fibre. The Cox model then
views each single fibre as connected to an elastic sheet (the rest of the network) via the
segments of the crossing fibres (figure 3). If the displacements in the sheet are denoted by
us(x), and the displacements in the fibre byuf (x), the stress (σf ) in the fibre cross section
as a function of the position (x) along the fibre is given by

l
dσf
dx
= c (uf − us)

l
(10)

wherec is a stress-transfer constant (li = l is assumed to be constant in the model). As the
stress and strain are related throughσ = Eε, and the displacements can be expressed as
dus/dx = εs and duf /dx = εf , it is easy to verify that the Cox expression

σf (x, ĉ) = Eεs
[

1− cosh(ĉ(1/2− x/L))
cosh(ĉ/2)

]
(11)

where ĉ = √cL/l is a solution of equation (10) satisfying the boundary conditions
σf (0, ĉ) = σf (L, ĉ) = 0. In the Cox model stress correlations over more than one segment
length in the intersecting fibres are neglected. Therefore,c is a function of onlyw/l and
not of w/L.
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In the absence of a transverse Poisson contraction of the network, the angular dependence
of the axial stress is simply given by

σf (x, ĉ, θ) = σf (x, ĉ) cos2(θ) (12)

where θ is the angle between the fibre and the direction of the external tension. The
elastic energy stored in the network (as an axial tension of the fibres) is1

2

∫
V
σε dV , where

integration is over the area of all fibre segments in the two-dimensional network (most of
the elastic energy in a random-fibre network is stored as an axial tension of the fibres [14]).
Using equations (11) and (12), the elastic energy of the network can be written as

W(ĉ) = 1

2
Eε2

s LxLyq
w2

L2π

∫ π
2

− π
2

∫ L

0
cos4(θ)f 2(x, ĉ) dx dθ (13)

wheref (x, ĉ) is the expression inside the brackets in equation (11),LxLy is the size of the
network andw the width of the fibres. The total elastic energy in the network can also be
written asW = (LxLy/2)Enε2, whereEn is the effective Young’s modulus of the network.
By combining this equation with equation (13), we arrive at an expression forC andG,

C = a3Ew2

8L
(q − bqc) (14)

whereqc is the percolation critical density, anda, b are constants. A similar expression is
found forG with different values for the constantsa andb. The velocities of elastic waves
in a homogeneous medium are simply

√
C/ρ for the longitudinal waves, and

√
G/ρ for the

transverse waves. Using equation (14) we find that

v =
√
πEw2L

2qm

√
3aπ

16

√
1− bqc

q
. (15)

The correct values of the parametersa and b cannot be determined by the Cox model
[7]. To get the values of these parameters we used a finite-element code [7], and obtained
the following values for networks with the same parameter values as the ones used in the
simulations to be described in the next section:a ≈ 1.08, b ≈ 2.8 for the longitudinal
waves, anda ≈ 0.35, b ≈ 3.3 for the transverse waves. We notice in passing that these
values give the Poisson ratioσ = 0.35.

In a continuous and homogeneous medium the amplitude of the first displacement
maximum would remain constant. In a discrete but homogeneous medium the amplitude
will decrease due to dispersion. The dispersion relation for discrete mass points coupled
by harmonic potentials will lead to a power-law decay at late times for the amplitude:
A(x) ∝ x−1/3 [15].

5. Numerical results

We have used the numerical model described in section 2 to test the two model solutions,
i.e. equations (8) and (15). At first we test the one-dimensional model. In figure 4 the
distances along thex-axis of the crossing points are plotted against the average time of
arrival of the first displacement maximum at these points for varying values of the network
parameters (i.e.E, q,m,L,w). In order to test equation (8), the scale is set for each
curve separately so that they should collapse on one velocity curve for the transverse
and on another for the longitudinal waves. This means that the scale is determined by√
πEw2L/2qm for the longitudinal waves, and by

√
2qEw4/πmL for the transverse waves.

It is obvious that the scaling works quite well with respect toE andm for the longitudinal
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Figure 4. Velocities of transverse and longitudinal waves (slopes of the curves). For the
transverse waves (lower curves)q/qc = 4, 6, 8, m = 0.01, 0.05, 0.1, w = 0.07, 0.1, 0.15
and lf = 2, 3. For the longitudinal waves (upper curves)q/qc = 4, w = 0.01, lf = 2,
m = 0.0005, 0.0001, 0.000 02, andE = 3, 1, 0.3.

Figure 5. Velocities of longitudinal waves as a function of
√
q/qc. The velocities are scaled by√

πEw2lf /2m. The upper line is given by equation (8), and the lower line by equation (15).

Simulation data forw/lf = 0.05, 0.025, 0.0125, 0.003 75 and for spring networks(w/lf → 0)
are displayed (fgl = 0.97). The frequency is 0.125, except forw/lf = 0.003 75 in which case
it is 0.0125.

waves. We found, however, that scaling is not fulfilled with respect tow,L or q. This
indicates that both modes (equations (8) and (15)) are included in the observed velocity
(b has been found to depend onw/L [6]). For the transverse waves scaling works with
respect to all parametersE,m,w,L and q, which indicates that velocity is dominated
by the segment-chain mode (equation (8)). Figure 4 also indicates that the velocities
(slopes of the curves) remain fairly constant, only at short times can a boundary effect
be observed.

In order to further analyse the longitudinal waves, we plot in figure 5 their velocities,
scaled by

√
πEw2L/2m, for different fibre widths as a function of density. It is evident

that the velocities are in excellent agreement with equation (8) for slender fibres, while they
approach equation (15) for thick fibres. For very low frequencies the velocity is accurately
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Figure 6. Velocities of transverse waves as a function of
√
q/qc. The upper line is given by

equation (8), and the lower line by equation (15). Simulation data forw/lf = 0.075, 0.05, 0.035

were obtained using the frequency 0.125 (these data are scaled by
√
πEw2lf /2m). The rest of

the data,w/lf = 0.0075, 0.005, 0.003 75, are for a frequency of 0.0125 (these data are scaled

by
√

2Ew4/πmlf ); fgt = 1.0.

determined by equation (15) even for slender fibres. The only deviation is close to the
critical density of percolation where the Cox model fails. Figure 5 demonstrates clearly
that there is a cross-over phenomenon between the two model solutions as the fibre width
is changed.

In figure 6 similar results are shown for the transverse waves scaled by
√

2Ew4/πmL.
From this figure it is evident that the segment-chain model describes the situation for
relatively broad fibres (w = 0.035, 0.05, 0.075) and at high densities. At small densities,
however, the velocity deviates from the segment-chain model prediction. Deviation begins
at densities for which the longitudinal mode is about 20% faster than the transverse mode (at√
q/qc = 1.6, 1.9, 2.3 in figure 6). It is obvious that at these points the longitudinal mode

begins to dominate the first displacement maximum even though the driving source operates
in the transverse mode. A corresponding phenomenon was also observed for the longitudinal
waves at high densities and for thick fibres (i.e. for densities higher than those shown in
figure 5). Numerically, the effective medium velocity was difficult to find for the transverse
mode, but for very low frequencies (0.0125) and slender fibres (0.0075, 0.005, 0.0035) it
could be detected. Notice that these velocities are scaled according to equation (15), i.e.
the scale is given by

√
πEw2L/2m. This case is different from the other data points in the

figure 6 which are scaled by
√

2Ew4/πmL.
In order to clarify the effect of the rate at which the signal changes, we have analysed

the velocities for a varying driving frequency. This complements the results shown in
figures 4 and 5. For wavelengths which are of the same order of magnitude as the average
segment length〈l〉, the network cannot reach a local equilibrium while the first displacement
maximum is passing by. This means that the segment-chain model is expected to give the
correct velocity. As the frequency is lowered, the velocity should approach that of the
effective-medium model. This is indeed what seems to happen as is evident from figure 7.
The results in this figure are for longitudinal waves and the parameters areq/qc = 3,
m = 8.14× 10−8, w = 0.0001 andL = 2.

It is obvious that for any driving frequency both the segment-chain and effective-medium
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Figure 7. The observed longitudinal velocity without mode distinction as a funtion of
frequency;q/qc = 3, m = 8.14× 10−8, w = 0.0001 andlf = 2. The wavelengths are
0.6lf , 1.0lf , 1.8lf , 2.6lf , 5.1lf , 8.4lf , which correspond to the frequencies1

4 ,
1
8 ,

1
16,

1
25,

1
60,

1
200,

respectively. The upper and lower lines are the segment-chain model velocity and the effective-
medium velocity, respectively.

modes are always excited in the random-fibre network. If it is not possible to distinguish
between these modes, which is certainly the case at short distances, the observed velocity
will have an apparent dependence on the driving frequency as demonstarted in figure 7.
The relative importance of the modes depends on the driving frequency and on the fibre
stiffness as described above. As the segment-chain modes are exponentially decaying (cf
figure 8), at late times the propagating signal will always be dominated by the effective
medium modes. In fact distinction between these two kinds of modes is much easier in
randomly diluted lattices where they both also appear. Results for these systems will be
published elsewhere [15].

Finally, the two models were tested by following the amplitude as a function of distance,
and the results are shown in figure 8. The predicted cross-over from a power-law decay
(or an almost constant amplitude) for broad fibres to an exponentially decreasing amplitude
for slender fibres is obvious. Note that the exponential decay is very fast for the spring
networks (w = 0.0). The penetration depth of the wave is for these networks at most a few
fibre lengths [9].

6. Discussion

By comparing equations (8) and (15) it is evident that the velocity of the segment-chain
model and that of the continuum model are different. For the longitudinal waves this
difference essentially arises from the parameterb, and for the transverse waves it is even
more pronounced. For the transverse waves the result of the one-dimensional model scales
as
√

2qEw4/πmL, while that of the effective-medium model scales as
√
πqEw2L/2m. In

the effective-medium modelb arises from the distribution of stress along individual fibres,
which in this case is an equilibrium distribution [6]. In the one-dimensional model there is
no equilibrium andb does not appear.

It is evident that not only the velocities but also the effective Young’s moduli of the two
models described above are different because local equilibrium is achieved in one model but
not in the other (here we mean the Young’s modulus as determined from the velocity of the
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Figure 8. Logarithm of the amplitude of the first displacement maximum as a function of
distance from the driving source. The fibre widths arew = 0.0, 0.0001, 0.005, 0.08, and 0.1.

waves). We would therefore expect that, for high-frequency ultrasound, the model of non-
interacting segment chains should give the observed effective Young’s modulus, while the
continuum model should give the observed value as the frequency becomes small (cross-over
should take place when the wavelength is of the order of a fewl). This difference between
the ‘dynamic’ and ‘static’ moduli is actually seen in experiments on paper sheets [16], but
there may be other factors (i.e. viscoelasticity) which explain this difference as the frequency
of the ultrasound used in the experiments was rather low. Recent experiments [17] that also
apply low-frequency ultrasound, indicate that equation (15) fits well the observed velocity
for fairly low values ofq when paper sheets can still be considered as two-dimensional.
Notice that a lowq does not here mean aq close to the critical threshold of percolation, but
rather aq low compared with that of ordinary paper. The same experiments also gave a value
0.58 for the ratio of the transverse and longitudinal velocities. This means that the observed
Poisson’s ratio isσ = 0.33, which agrees with the value found from the effective-medium
model,σ = 0.35. Attenuation of the segment-chain mode makes its detection difficult.

Many earlier studies [10, 18] have dealt with localization, which is related to the long-
time behaviour of the energy carried by the elastic waves. Localization is a result of
interference between incoming and scattered waves. Here we consider only the very first
wavefront (no interference with backscattered waves). In the effective-medium limit it is
quite obvious that the first displacement maximum is dominated by propagating modes, at
least on short scales, and that localized modes such as fracton type modes in percolating
lattices [18] are not important. On scales very much larger than those used in the simulations,
localization could perhaps be seen, although it may be beyond the present computational
capabilities. In the limit of a small bending stiffness of the fibres (i.e. the limit of the
one-dimensional model), the situation is more complicated. The exponentially decaying
amplitude is in this case a consequence of the fact that the slower modes are being left
behind the first displacement maximum at the interfibre crossings (cf equation (9)) [9].
Localization, which is governed by a different mechanism, will also in this case take place
in a larger length scale. When the bending stiffness is exactly zero (i.e. a spring network),
however, only zero-frequency and localized modes exist [9].

In a sense the random-fibre networks analysed here resemble granular materials [19].
All mass is concentrated on the ‘grains’ of the interfibre crossings, and the fibre segments
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correspond to the interactions between the grains. An important difference is that all
‘collisions’ between ‘grains’ are now elastic, which means that no elastic energy is lost into
heat in the fibre networks. Another important difference is of course that the interactions
in the fibre network make large displacements impossible. There are, however, also a few
similarities. For instance, it has been demonstrated that much of the stress in granular
materials is concentrated along strings [20] which resemble the one-dimensional paths of
the transient signals in the fibre network.

To conclude, we have shown that there are two kinds of modes of ‘elastic’ waves in
random-fibre networks, and that these modes can be understood within simple models. They
depend differently on the parameters of the network. The segment-chain mode dominates
the velocity at short distances of longitudinal (transverse) waves in networks where the
axial (bending) stiffness of the fibre segments dominates, especially in the limit of high
frequencies. There also appears an apparent frequency dependence in the observed velocities
if the modes cannot be distinguished. Furthermore, there should be a difference in the elastic
moduli obtained from dynamic and static measurements. Dynamic means here frequencies
higher than those related to the average fibre length. The difference between the segment-
chain behaviour and the effective-medium behaviour is particulary pronounced in the case
of transverse modes.
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[9] Kellomäki M, Åström J and Timonen J 1996Phys. Rev. Lett.77 2730

[10] For reviews see for example Sheng P 1995Introduction to Wave Scattering, Localization, and Mesoscopic
Phenomena(San Diego, CA: Academic)

Faris W G //www.ams.org/publications/notices/199508/faris.html
[11] Pastur L and Figotin A 1992Spectra of Random and Almost-periodic Operators(Berlin: Springer)
[12] Stauffer D 1985Introduction to Percolation Theory(London: Taylor and Francis)
[13] Arfken G 1985Mathematical Methods for Physicists(San Diego, CA: Academic)
[14] Hamlen R C 1991PhD ThesisUniversity of Minnesota
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